Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previo...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2020-04, Vol.27 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.5135921 |