Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility

We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-04, Vol.27 (4)
Hauptverfasser: Döppner, T., Hinkel, D. E., Jarrott, L. C., Masse, L., Ralph, J. E., Benedetti, L. R., Bachmann, B., Celliers, P. M., Casey, D. T., Divol, L., Field, J. E., Goyon, C., Hatarik, R., Hohenberger, M., Izumi, N., Khan, S. F., Kritcher, A. L., Ma, T., MacGowan, B. J., Millot, M., Milovich, J., Nagel, S., Pak, A., Park, J., Patel, P., Tommasini, R., Volegov, P., Weber, C., Landen, O. L., Callahan, D. A., Hurricane, O. A., Edwards, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5135921