Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application

Through density functional theory calculations, we show that the alloy perovskite system BaZr1–x Ti x S3 (x < 0.25) is a promising candidate for producing high power conversion efficiency (PCE) solar cells with ultrathin absorber layers. To maximize the minority carrier lifetime, which is importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-02, Vol.28 (3), p.821-829
Hauptverfasser: Meng, Weiwei, Saparov, Bayrammurad, Hong, Feng, Wang, Jianbo, Mitzi, David B, Yan, Yanfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through density functional theory calculations, we show that the alloy perovskite system BaZr1–x Ti x S3 (x < 0.25) is a promising candidate for producing high power conversion efficiency (PCE) solar cells with ultrathin absorber layers. To maximize the minority carrier lifetime, which is important for achieving high PCE, the defect calculations show that BaZr1–x Ti x S3 films should be synthesized under moderate (i.e., near stoichiometric) growth conditions to minimize the formation of deep-level defects. The perovskite BaZrS3 is also found to exhibit ambipolar self-doping properties, indicating the ability to form homo p–n junctions. However, our theoretical calculations and experimental solid-state reaction efforts indicate that the doped perovskite BaZr1–x Ti x S3 (x > 0) may not be stable under thermal equilibrium growth conditions. Calculations of decomposition energies suggest that introducing compressive strain may be a plausible approach to stabilize BaZr1–x Ti x S3 thin films.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.5b04213