Measurement-induced criticality in random quantum circuits

We investigate the critical behavior of the entanglement transition induced by projective measurements in (Haar) random unitary quantum circuits. Using a replica approach, we map the calculation of the entanglement entropies in such circuits onto a two-dimensional statistical-mechanics model. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-03, Vol.101 (10), p.1, Article 104302
Hauptverfasser: Jian, Chao-Ming, You, Yi-Zhuang, Vasseur, Romain, Ludwig, Andreas W. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the critical behavior of the entanglement transition induced by projective measurements in (Haar) random unitary quantum circuits. Using a replica approach, we map the calculation of the entanglement entropies in such circuits onto a two-dimensional statistical-mechanics model. In this language, the area- to volume-law entanglement transition can be interpreted as an ordering transition in the statistical-mechanics model. We derive the general scaling properties of the entanglement entropies and mutual information near the transition using conformal invariance. We analyze in detail the limit of infinite on-site Hilbert space dimension in which the statistical-mechanics model maps onto percolation. In particular, we compute the exact value of the universal coefficient of the logarithm of subsystem size in the nth Rényi entropies for n≥1 in this limit using relatively recent results for the conformal field theory describing the critical theory of two-dimensional (2D) percolation, and we discuss how to access the generic transition at finite on-site Hilbert space dimension from this limit, which is in a universality class different from 2D percolation. We also comment on the relation to the entanglement transition in random tensor networks, studied previously in Vasseur et al. [Phys. Rev. B 100, 134203 (2019)].
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.101.104302