Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection
For rapidly rotating turbulent Rayleigh-Bénard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat trans...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-02, Vol.124 (8), p.084505-084505, Article 084505 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For rapidly rotating turbulent Rayleigh-Bénard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one, whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like Ra^{1/4}Ek^{2/3} where the Ekman number Ek decreases with increasing rotation rate. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.084505 |