Nature of the Correlated Insulator States in Twisted Bilayer Graphene

We use self-consistent Hartree-Fock calculations performed in the full π-band Hilbert space to assess the nature of the recently discovered correlated insulator states in magic-angle twisted bilayer graphene (TBG). We find that gaps between the flat conduction and valence bands open at neutrality ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-03, Vol.124 (9), p.097601-097601, Article 097601
Hauptverfasser: Xie, Ming, MacDonald, A H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use self-consistent Hartree-Fock calculations performed in the full π-band Hilbert space to assess the nature of the recently discovered correlated insulator states in magic-angle twisted bilayer graphene (TBG). We find that gaps between the flat conduction and valence bands open at neutrality over a wide range of twist angles, sometimes without breaking the system's valley projected C_{2}T symmetry. Broken spin-valley flavor symmetries then enable gapped states to form not only at neutrality, but also at total moiré band filling n=±p/4 with integer p=1, 2, 3, when the twist angle is close to the magic value at which the flat bands are most narrow. Because the magic-angle flat band quasiparticles are isolated from remote band quasiparticles only for effective dielectric constants larger than ∼20, the gapped states do not necessarily break C_{2}T symmetry and as a consequence the insulating states at n=±1/4 and n=±3/4 need not exhibit a quantized anomalous Hall effect.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.124.097601