Nature of the Correlated Insulator States in Twisted Bilayer Graphene
We use self-consistent Hartree-Fock calculations performed in the full π-band Hilbert space to assess the nature of the recently discovered correlated insulator states in magic-angle twisted bilayer graphene (TBG). We find that gaps between the flat conduction and valence bands open at neutrality ov...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-03, Vol.124 (9), p.097601-097601, Article 097601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use self-consistent Hartree-Fock calculations performed in the full π-band Hilbert space to assess the nature of the recently discovered correlated insulator states in magic-angle twisted bilayer graphene (TBG). We find that gaps between the flat conduction and valence bands open at neutrality over a wide range of twist angles, sometimes without breaking the system's valley projected C_{2}T symmetry. Broken spin-valley flavor symmetries then enable gapped states to form not only at neutrality, but also at total moiré band filling n=±p/4 with integer p=1, 2, 3, when the twist angle is close to the magic value at which the flat bands are most narrow. Because the magic-angle flat band quasiparticles are isolated from remote band quasiparticles only for effective dielectric constants larger than ∼20, the gapped states do not necessarily break C_{2}T symmetry and as a consequence the insulating states at n=±1/4 and n=±3/4 need not exhibit a quantized anomalous Hall effect. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.124.097601 |