Defect activation and annihilation in CIGS solar cells: an operando x-ray microscopy study

The efficiency of thin-film solar cells with a Cu( In 1 − x Ga x )Se 2 absorber is limited by nanoscopic inhomogeneities and defects. Traditional characterization methods are challenged by the multi-scale evaluation of the performance at defects that are buried in the device structures. Multi-modal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPhys Energy 2020-04, Vol.2 (2), p.25001
Hauptverfasser: Stuckelberger, Michael E, Nietzold, Tara, West, Bradley, Farshchi, Rouin, Poplavskyy, Dmitry, Bailey, Jeff, Lai, Barry, Maser, Jörg M, Bertoni, Mariana I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficiency of thin-film solar cells with a Cu( In 1 − x Ga x )Se 2 absorber is limited by nanoscopic inhomogeneities and defects. Traditional characterization methods are challenged by the multi-scale evaluation of the performance at defects that are buried in the device structures. Multi-modal x-ray microscopy offers a unique tool-set to probe the performance in fully assembled solar cells, and to correlate the performance with composition down to the micro- and nanoscale. We applied this approach to the mapping of temperature-dependent recombination for Cu( In 1 − x Ga x )Se 2 solar cells with different absorber grain sizes, evaluating the same areas from room temperature to 100 ° C . It was found that poor performing areas in the large-grain sample are correlated with a Cu-deficient phase, whereas defects in the small-grain sample are not correlated with the distribution of Cu. In both samples, classes of recombination sites were identified, where defects were activated or annihilated by temperature. More generally, the methodology of combined operando and in situ x-ray microscopy was established at the physical limit of spatial resolution given by the device itself. As proof-of-principle, the measurement of nanoscopic current generation in a solar cell is demonstrated with applied bias voltage and bias light.
ISSN:2515-7655
2515-7655
DOI:10.1088/2515-7655/ab5fa6