High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression

Mobility engineering is one of the most important challenges that determine the optoelectronic performance of two-dimensional (2D) materials. So far, charged-impurity scattering and electrical-contact barriers have been suppressed through high-κ dielectrics and seamless contact engineering, giving r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-08, Vol.10 (31), p.15071-15077
Hauptverfasser: Huo, Nengjie, Yang, Yujue, Yu-Ning, Wu, Xiao-Guang Zhang, Pantelides, Sokrates T, Konstantatos, Gerasimos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobility engineering is one of the most important challenges that determine the optoelectronic performance of two-dimensional (2D) materials. So far, charged-impurity scattering and electrical-contact barriers have been suppressed through high-κ dielectrics and seamless contact engineering, giving rise to carrier-mobility improvement in exfoliated 2D semiconducting MoS2. Here we demonstrate a facile and scalable technique to effectively suppress both Coulomb scattering and electron–phonon scattering via the HfO2 overlayer, resulting in a large mobility improvement in CVD-grown monolayer MoS2, in excess of 60 cm2 V−1 s−1. Surface passivation and suppression of Coulomb scattering can partially contribute to the mobility increase. Interestingly, we correlate the mobility increase with phonon quenching through Raman and temperature-dependent mobility measurements. The experimental method is facile, industrially scalable, and renders phonon engineering an additional leverage towards further improvements in 2D semiconductor mobility and device performance.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr04416c