High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression
Mobility engineering is one of the most important challenges that determine the optoelectronic performance of two-dimensional (2D) materials. So far, charged-impurity scattering and electrical-contact barriers have been suppressed through high-κ dielectrics and seamless contact engineering, giving r...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-08, Vol.10 (31), p.15071-15077 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobility engineering is one of the most important challenges that determine the optoelectronic performance of two-dimensional (2D) materials. So far, charged-impurity scattering and electrical-contact barriers have been suppressed through high-κ dielectrics and seamless contact engineering, giving rise to carrier-mobility improvement in exfoliated 2D semiconducting MoS2. Here we demonstrate a facile and scalable technique to effectively suppress both Coulomb scattering and electron–phonon scattering via the HfO2 overlayer, resulting in a large mobility improvement in CVD-grown monolayer MoS2, in excess of 60 cm2 V−1 s−1. Surface passivation and suppression of Coulomb scattering can partially contribute to the mobility increase. Interestingly, we correlate the mobility increase with phonon quenching through Raman and temperature-dependent mobility measurements. The experimental method is facile, industrially scalable, and renders phonon engineering an additional leverage towards further improvements in 2D semiconductor mobility and device performance. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c8nr04416c |