Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride
Atomically thin molybdenum disulfide (MoS2), a direct-band-gap semiconductor, is promising for applications in electronics and optoelectronics, but the scalable synthesis of highly crystalline film remains challenging. Here we report the successful epitaxial growth of a continuous, uniform, highly c...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-07, Vol.139 (27), p.9392-9400 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomically thin molybdenum disulfide (MoS2), a direct-band-gap semiconductor, is promising for applications in electronics and optoelectronics, but the scalable synthesis of highly crystalline film remains challenging. Here we report the successful epitaxial growth of a continuous, uniform, highly crystalline monolayer MoS2 film on hexagonal boron nitride (h-BN) by molecular beam epitaxy. Atomic force microscopy and electron microscopy studies reveal that MoS2 grown on h-BN primarily consists of two types of nucleation grains (0° aligned and 60° antialigned domains). By adopting a high growth temperature and ultralow precursor flux, the formation of 60° antialigned grains is largely suppressed. The resulting perfectly aligned grains merge seamlessly into a highly crystalline film. Large-scale monolayer MoS2 film can be grown on a 2 in. h-BN/sapphire wafer, for which surface morphology and Raman mapping confirm good spatial uniformity. Our study represents a significant step in the scalable synthesis of highly crystalline MoS2 films on atomically flat surfaces and paves the way to large-scale applications. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b05131 |