The Pristine Survey – VIII. The metallicity distribution function of the Milky Way halo down to the extremely metal-poor regime

ABSTRACT The Pristine survey uses narrow-band photometry to derive precise metallicities down to the extremely metal-poor regime ($ \rm [Fe/H] \lt -3$), and currently consists of over 4 million FGK-type stars over a sky area of $\sim 2500\, \mathrm{deg}^2$. We focus our analysis on a subsample of ∼8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-03, Vol.492 (4), p.4986-5002
Hauptverfasser: Youakim, K, Starkenburg, E, Martin, N F, Matijevič, G, Aguado, D S, Allende Prieto, C, Arentsen, A, Bonifacio, P, Carlberg, R G, González Hernández, J I, Hill, V, Kordopatis, G, Lardo, C, Navarro, J F, Jablonka, P, Sánchez Janssen, R, Sestito, F, Thomas, G F, Venn, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The Pristine survey uses narrow-band photometry to derive precise metallicities down to the extremely metal-poor regime ($ \rm [Fe/H] \lt -3$), and currently consists of over 4 million FGK-type stars over a sky area of $\sim 2500\, \mathrm{deg}^2$. We focus our analysis on a subsample of ∼80 000 main-sequence turn-off stars with heliocentric distances between 6 and 20 kpc, which we take to be a representative sample of the inner halo. The resulting metallicity distribution function (MDF) has a peak at $ \rm [Fe/H] =-1.6$, and a slope of Δ(LogN)/$\Delta \rm [Fe/H] = 1.0 \pm 0.1$ in the metallicity range of $-3.4\; \lt\; \rm [Fe/H]\; \lt -2.5$. This agrees well with a simple closed-box chemical enrichment model in this range, but is shallower than previous spectroscopic MDFs presented in the literature, suggesting that there may be a larger proportion of metal-poor stars in the inner halo than previously reported. We identify the Monoceros/TriAnd/ACS/EBS/A13 structure in metallicity space in a low-latitude field in the anticentre direction, and also discuss the possibility that the inner halo is dominated by a single, large merger event, but cannot strongly support or refute this idea with the current data. Finally, based on the MDF of field stars, we estimate the number of expected metal-poor globular clusters in the Milky Way halo to be 5.4 for $ \rm [Fe/H]\; \lt\; -2.5$ and 1.5 for $ \rm [Fe/H]\; \lt\; -3$, suggesting that the lack of low-metallicity globular clusters in the Milky Way is not due simply to statistical undersampling.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz3619