A Borcherds–Kac–Moody Superalgebra with Conway Symmetry
We construct a Borcherds–Kac–Moody (BKM) superalgebra on which the Conway group Co 0 acts faithfully. We show that the BKM algebra is generated by the physical states (BRST cohomology classes) in a chiral superstring theory. We use this construction to produce denominator identities for the chiral p...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-09, Vol.370 (2), p.539-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a Borcherds–Kac–Moody (BKM) superalgebra on which the Conway group
Co
0
acts faithfully. We show that the BKM algebra is generated by the physical states (BRST cohomology classes) in a chiral superstring theory. We use this construction to produce denominator identities for the chiral partition functions of the Conway module
V
s
♮
, a supersymmetric
c
=
12
chiral conformal field theory whose (twisted) partition functions enjoy moonshine properties and which has automorphism group isomorphic to
Co
0
. In particular, these functions satisfy a genus zero property analogous to that of monstrous moonshine. Finally, we suggest how one may promote the denominators to spacetime BPS indices in type II string theory, which might thus furnish a physical explanation of the genus zero property of Conway moonshine. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03518-0 |