Electrode Degradation in Lithium-Ion Batteries

Although Li-ion batteries have emerged as the battery of choice for electric vehicles and large-scale smart grids, significant research efforts are devoted to identifying materials that offer higher energy density, longer cycle life, lower cost, and/or improved safety compared to those of convention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-02, Vol.14 (2), p.1243-1295
Hauptverfasser: Pender, Joshua P, Jha, Gaurav, Youn, Duck Hyun, Ziegler, Joshua M, Andoni, Ilektra, Choi, Eric J, Heller, Adam, Dunn, Bruce S, Weiss, Paul S, Penner, Reginald M, Mullins, C. Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although Li-ion batteries have emerged as the battery of choice for electric vehicles and large-scale smart grids, significant research efforts are devoted to identifying materials that offer higher energy density, longer cycle life, lower cost, and/or improved safety compared to those of conventional Li-ion batteries based on intercalation electrodes. By moving beyond intercalation chemistry, gravimetric capacities that are 2–5 times higher than that of conventional intercalation materials (e.g., LiCoO2 and graphite) can be achieved. The transition to higher-capacity electrode materials in commercial applications is complicated by several factors. This Review highlights the developments of electrode materials and characterization tools for rechargeable lithium-ion batteries, with a focus on the structural and electrochemical degradation mechanisms that plague these systems.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b04365