From hydrogen to helium: the spectral evolution of white dwarfs as evidence for convective mixing
ABSTRACT We present a study of the hypothesis that white dwarfs undergo a spectral change from hydrogen- to helium-dominated atmospheres using a volume-limited photometric sample drawn from the Gaia-DR2 catalogue, the Sloan Digital Sky Survey (SDSS), and the Galaxy Evolution Explorer (GALEX). We exp...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2020-03, Vol.492 (3), p.3540-3552 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
We present a study of the hypothesis that white dwarfs undergo a spectral change from hydrogen- to helium-dominated atmospheres using a volume-limited photometric sample drawn from the Gaia-DR2 catalogue, the Sloan Digital Sky Survey (SDSS), and the Galaxy Evolution Explorer (GALEX). We exploit the strength of the Balmer jump in hydrogen-atmosphere DA white dwarfs to separate them from helium-dominated objects in SDSS colour space. Across the effective temperature range from 20 000 to 9000 K, we find that 22 per cent of white dwarfs will undergo a spectral change, with no spectral evolution being ruled out at 5σ. The most likely explanation is that the increase in He-rich objects is caused by the convective mixing of DA stars with thin hydrogen layers, in which helium is dredged up from deeper layers by a surface hydrogen convection zone. The rate of change in the fraction of He-rich objects as a function of temperature, coupled with a recent grid of 3D radiation-hydrodynamic simulations of convective DA white dwarfs – which include the full overshoot region – lead to a discussion on the distribution of total hydrogen mass in white dwarfs. We find that 60 per cent of white dwarfs must have a hydrogen mass larger than MH/MWD = 10−10, another 25 per cent have masses in the range MH/MWD = 10−14–10−10, and 15 per cent have less hydrogen than MH/MWD = 10−14. These results have implications for white dwarf asteroseismology, stellar evolution through the asymptotic giant branch and accretion of planetesimals on to white dwarfs. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz3638 |