Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron

A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 μs, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-04, Vol.114 (16), p.164102-164102
Hauptverfasser: Picard, Julian F., Schaub, Samuel C., Rosenzweig, Guy, Stephens, Jacob C., Shapiro, Michael A., Temkin, Richard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 μs, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230 mJ pulses. Irradiation of a single Si wafer by the laser produced 110 GHz RF pulses with a 9 ns width and >70% reflectance. Under the same conditions, a single GaAs wafer yielded 24 ns 110 GHz RF pulses with >78% reflectance. For both semiconductor materials, a higher value of reflectance was observed with increasing 110 GHz beam intensity. Using two active wafers, pulses of variable length down to 3 ns duration were created. The switch was tested at incident 110 GHz RF power levels up to 600 kW. A 1-D model is presented that agrees well with the experimentally observed temporal pulse shapes obtained with a single Si wafer. The LDSS has many potential uses in high power millimeter-wave research, including testing of high-gradient accelerator structures.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5093639