Acoustic activation of water-in-oil microemulsions for controlled salt dissolution
[Display omitted] The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural change...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2018-11, Vol.529 (C), p.366-374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | C |
container_start_page | 366 |
container_title | Journal of colloid and interface science |
container_volume | 529 |
creator | Baxamusa, Salmaan Ehrmann, Paul Ong, Jemi |
description | [Display omitted]
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates.
Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field.
Dispersed aqueous domains of 2–6 nm radius dissolve a solid block of KDP at 0–10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with |
doi_str_mv | 10.1016/j.jcis.2018.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1592500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979718306805</els_id><sourcerecordid>2059572194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-4c11e4fc877af4957e7ff45205563678b706ccf4533c0664be6a659392918e8a3</originalsourceid><addsrcrecordid>eNp9kM1q3TAQhUVpaW7SvkAWwWTVjd2RrB8LugmhTQKBQGnXQlceU11kK5XklL59ZW6SZVeC0TlnznyEnFPoKFD5-dAdnM8dAzp0IDvo2Ruyo6BFqyj0b8kOgNFWK61OyGnOBwBKhdDvyQnTmkNP9Y58v3JxzcW7xrrin2zxcWni1PyxBVPrlzb60MzepYjzGnL9zc0UU-PiUlIMAccm21Ca0eccw7rZP5B3kw0ZPz6_Z-Tnt68_rm_b-4ebu-ur-9ZxyUvLHaXIJzcoZSeuhUI1TVwwEEL2Ug17BdK5Oul7B1LyPUorhe4103TAwfZn5PKYG2t_k50v6H7VXgu6YqjQTABU0aej6DHF3yvmYmafHYZgF6yHm7qurmZU8yplR2k9NueEk3lMfrbpr6FgNuDmYDbgZgNuQJoKvJounvPX_Yzjq-WFcBV8OQqwonjymLamuDgcfdqKjtH_L_8fn_WRYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059572194</pqid></control><display><type>article</type><title>Acoustic activation of water-in-oil microemulsions for controlled salt dissolution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baxamusa, Salmaan ; Ehrmann, Paul ; Ong, Jemi</creator><creatorcontrib>Baxamusa, Salmaan ; Ehrmann, Paul ; Ong, Jemi</creatorcontrib><description>[Display omitted]
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates.
Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field.
Dispersed aqueous domains of 2–6 nm radius dissolve a solid block of KDP at 0–10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2018.06.032</identifier><identifier>PMID: 29940319</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Dissolution ; Interfacial transport ; Microemulsions ; Ultrasonics</subject><ispartof>Journal of colloid and interface science, 2018-11, Vol.529 (C), p.366-374</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-4c11e4fc877af4957e7ff45205563678b706ccf4533c0664be6a659392918e8a3</citedby><cites>FETCH-LOGICAL-c464t-4c11e4fc877af4957e7ff45205563678b706ccf4533c0664be6a659392918e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2018.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29940319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1592500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baxamusa, Salmaan</creatorcontrib><creatorcontrib>Ehrmann, Paul</creatorcontrib><creatorcontrib>Ong, Jemi</creatorcontrib><title>Acoustic activation of water-in-oil microemulsions for controlled salt dissolution</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates.
Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field.
Dispersed aqueous domains of 2–6 nm radius dissolve a solid block of KDP at 0–10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution.</description><subject>Dissolution</subject><subject>Interfacial transport</subject><subject>Microemulsions</subject><subject>Ultrasonics</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3TAQhUVpaW7SvkAWwWTVjd2RrB8LugmhTQKBQGnXQlceU11kK5XklL59ZW6SZVeC0TlnznyEnFPoKFD5-dAdnM8dAzp0IDvo2Ruyo6BFqyj0b8kOgNFWK61OyGnOBwBKhdDvyQnTmkNP9Y58v3JxzcW7xrrin2zxcWni1PyxBVPrlzb60MzepYjzGnL9zc0UU-PiUlIMAccm21Ca0eccw7rZP5B3kw0ZPz6_Z-Tnt68_rm_b-4ebu-ur-9ZxyUvLHaXIJzcoZSeuhUI1TVwwEEL2Ug17BdK5Oul7B1LyPUorhe4103TAwfZn5PKYG2t_k50v6H7VXgu6YqjQTABU0aej6DHF3yvmYmafHYZgF6yHm7qurmZU8yplR2k9NueEk3lMfrbpr6FgNuDmYDbgZgNuQJoKvJounvPX_Yzjq-WFcBV8OQqwonjymLamuDgcfdqKjtH_L_8fn_WRYA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Baxamusa, Salmaan</creator><creator>Ehrmann, Paul</creator><creator>Ong, Jemi</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20181101</creationdate><title>Acoustic activation of water-in-oil microemulsions for controlled salt dissolution</title><author>Baxamusa, Salmaan ; Ehrmann, Paul ; Ong, Jemi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-4c11e4fc877af4957e7ff45205563678b706ccf4533c0664be6a659392918e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dissolution</topic><topic>Interfacial transport</topic><topic>Microemulsions</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxamusa, Salmaan</creatorcontrib><creatorcontrib>Ehrmann, Paul</creatorcontrib><creatorcontrib>Ong, Jemi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxamusa, Salmaan</au><au>Ehrmann, Paul</au><au>Ong, Jemi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic activation of water-in-oil microemulsions for controlled salt dissolution</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>529</volume><issue>C</issue><spage>366</spage><epage>374</epage><pages>366-374</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates.
Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field.
Dispersed aqueous domains of 2–6 nm radius dissolve a solid block of KDP at 0–10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29940319</pmid><doi>10.1016/j.jcis.2018.06.032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2018-11, Vol.529 (C), p.366-374 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_osti_scitechconnect_1592500 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Dissolution Interfacial transport Microemulsions Ultrasonics |
title | Acoustic activation of water-in-oil microemulsions for controlled salt dissolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20activation%20of%20water-in-oil%20microemulsions%20for%20controlled%20salt%20dissolution&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Baxamusa,%20Salmaan&rft.date=2018-11-01&rft.volume=529&rft.issue=C&rft.spage=366&rft.epage=374&rft.pages=366-374&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2018.06.032&rft_dat=%3Cproquest_osti_%3E2059572194%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059572194&rft_id=info:pmid/29940319&rft_els_id=S0021979718306805&rfr_iscdi=true |