Acoustic activation of water-in-oil microemulsions for controlled salt dissolution

[Display omitted] The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2018-11, Vol.529 (C), p.366-374
Hauptverfasser: Baxamusa, Salmaan, Ehrmann, Paul, Ong, Jemi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2–6 nm radius dissolve a solid block of KDP at 0–10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2018.06.032