Electrical switching in a magnetically intercalated transition metal dichalcogenide
Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics-a relatively new research direction promising technolo...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-11, Vol.19 (2) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics-a relatively new research direction promising technologies with fast switching times, insensitivity to magnetic perturbations and reduced cross-talk. Here, we present measurements on the intercalated transition metal dichalcogenide Fe1/3NbS2 that exhibits antiferromagnetic ordering below 42 K. We find that remarkably low current densities of the order of 104 A cm-2 can reorient the magnetic order, which can be detected through changes in the sample resistance, demonstrating its use as an electronically accessible antiferromagnetic switch. Finally, Fe1/3NbS2 is part of a larger family of magnetically intercalated transition metal dichalcogenides, some of which may exhibit switching at room temperature, forming a platform from which to build tuneable antiferromagnetic spintronic devices. |
---|---|
ISSN: | 1476-1122 1476-4660 |