Build orientation, surface roughness, and scan path influence on the microstructure, mechanical properties, and flexural fatigue behavior of Ti–6Al–4V fabricated by electron beam melting
In the present work, microstructure and fatigue behavior of Electron Beam Melted (EBM) Ti–6Al–4V have been systematically studied. Fatigue behavior was investigated using four-point bend tests of rectangular bars with internal features fabricated with different build orientations, scan paths, and su...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-01, Vol.772 (C), p.138740, Article 138740 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, microstructure and fatigue behavior of Electron Beam Melted (EBM) Ti–6Al–4V have been systematically studied. Fatigue behavior was investigated using four-point bend tests of rectangular bars with internal features fabricated with different build orientations, scan paths, and surface conditions. Microstructural variations were evaluated by optical microscopy and Vickers micro-hardness indentations, both of which were found to be consistent throughout the build and within ranges reported in the literature. The fatigue performance of the EBM material was comparable to wrought Ti–6Al–4V when the loading direction was parallel to the build direction, but severely limited when loaded perpendicular to the build direction or if surface roughness defects were present. Scanning electron microscopy and interrupted fatigue tests were utilized to characterize fracture surfaces, failure mechanisms, crack initiation, and propagation behavior. Crack initiation sites in the vertically-oriented specimens were identified to be melt-related defects formed by insufficient melting. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2019.138740 |