Anomalous Conductivity in the Rutile Structure Driven by Local Disorder

Many rutile-type materials are characterized by a softness in shear with pressure which is coupled to a Raman-active librational motion. Combining direct studies of anion positions in SnO2 with measurements of its electronic properties, we find a correlation between O sublattice disorder between 5 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-09, Vol.10 (18), p.5351-5356
Hauptverfasser: Smith, Dean, Sneed, Daniel, Dasenbrock-Gammon, Nathan, Snider, Elliot, Smith, G. Alexander, Childs, Christian, Pigott, Jeffrey S, Velisavljevic, Nenad, Park, Changyong, Lawler, Keith V, Dias, Ranga P, Salamat, Ashkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many rutile-type materials are characterized by a softness in shear with pressure which is coupled to a Raman-active librational motion. Combining direct studies of anion positions in SnO2 with measurements of its electronic properties, we find a correlation between O sublattice disorder between 5 and 10 GPa and an anomalous decrease up to 4 orders of magnitude in electrical resistance. Hypotheses into the atomistic nature of the phenomenon are evaluated via ab initio calculations guided by extended X-ray absorption fine structure spectroscopy analysis, and the most likely mechanism is found to be the displacement of single anions resulting from the pressure-induced softening of the librational mode. On the basis of this mechanism, we propose that the same behavior should feature across all materials exhibiting a rutile → CaCl2 phase transition and that conductivity in other rutile-type materials could be facilitated at ambient pressure by appropriate design of devices to enhance defects of this nature.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b01633