On the use of LES-based turbulent thermal-stress models for rod bundle simulations

•Novel approach to model turbulent thermal stresses in highly symmetrical geometries.•Application to triangular array rod bundles.•Full-height LES performed for the present project and presented for comparison.•Results are superior to available RANS and vastly cheaper than full scale LES.•Further sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2019-10, Vol.142 (C), p.118399, Article 118399
Hauptverfasser: Martínez, Javier, Lan, Yu-Hsiang, Merzari, Elia, Min, Misun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Novel approach to model turbulent thermal stresses in highly symmetrical geometries.•Application to triangular array rod bundles.•Full-height LES performed for the present project and presented for comparison.•Results are superior to available RANS and vastly cheaper than full scale LES.•Further speedup obtained with a novel Steady State solver in the SEM code Nek5000. An alternative methodology is proposed here to overcome the excessive cost of large eddy simulations (LES) of full-length heated rod bundle calculations, while improving the inaccurate results typically obtained with Reynolds-averaged Navier–Stokes equations (RANS). While the cost of the full-length LES is generally too high, LES of a small section of a single rod is usually affordable. The idea presented here consists of using the information granted by the small LES calculation to determine the appropriate turbulence viscosity or turbulent thermal diffusivity that can be used to solve only for the temperature field in a pseudo-RANS approach. The study has been performed with single-rod simulations with a P/D of 1.12 and 1.24, considering rod lengths that are representative of reactor applications, for the cases of uniform heat flux and a more realistic cosine-like axial heat distribution. The spectral element code Nek5000 has been used for all LES, RANS, and pseudo-RANS simulations. The recently proposed Nek5000 steady-state solver has been used for solving the temperature field in the pseudo-RANS approach and has proved significantly faster than transient schemes. Prediction of thermal quantities is compared with classical linear and nonlinear RANS models. LES for the full-length rods has also been performed and is used as a reference. Results of the proposed method show significant improvements with respect to those obtained with RANS.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2019.07.049