Programmable pulse synthesizer for the generation of Joule-level picosecond laser pulses of arbitrary shape
We report the demonstration of a pulse synthesizer based on spatial beam splitting and pulse stacking for the generation of picosecond laser pulses of Joule-level energy with arbitrary shape. An array of liquid crystals is used to control the amplitude of ten individual sub-pulses, and sliding retro...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-11, Vol.27 (24), p.35325-35335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the demonstration of a pulse synthesizer based on spatial beam splitting and pulse stacking for the generation of picosecond laser pulses of Joule-level energy with arbitrary shape. An array of liquid crystals is used to control the amplitude of ten individual sub-pulses, and sliding retroreflectors are used to adjust their temporal separations. The synthesizer was used in combination with a λ=1.03 µm diode-pumped cryogenically-cooled Yb: YAG chirped pulse amplification laser to synthesize 1.3 J pulses or pulse trains of arbitrary shapes up to 9 ns duration with a temporal resolution as short as 8 ps. This pulse synthesizer offers the opportunity to incorporate a self-learning system to search for the optimal laser pulse shapes for various applications including optimized plasma conditions in laser-plasma based soft x-ray lasers and plasma sources for extreme ultraviolet lithography. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.035325 |