Comprehensive experimental investigation on biomass‐glass beads binary fluidization: A data set for CFD model validation

Fluidization behavior of biomass and glass beads binary mixtures in a bubbling fluidized bed was experimentally investigated. Mixtures containing different mass fraction of Loblolly Pine white wood and glass beads were fluidized at different fluidization velocities. The particle properties were char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2020-02, Vol.66 (2), p.n/a
Hauptverfasser: Gao, Xi, Yu, Jia, Li, Cheng, Panday, Rupen, Xu, Yupeng, Li, Tingwen, Ashfaq, Huda, Hughes, Bryan, Rogers, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluidization behavior of biomass and glass beads binary mixtures in a bubbling fluidized bed was experimentally investigated. Mixtures containing different mass fraction of Loblolly Pine white wood and glass beads were fluidized at different fluidization velocities. The particle properties were characterized in a QICPIC that uses a dynamic image processing method to measure both particle size and sphericity. The minimum fluidization velocity was determined using the pressure drop method. An image processing method was developed to capture the dynamic expanded bed height at a very high frequency. The effect of biomass mass fraction and inlet gas velocity on mixing and segregation behavior was studied and analyzed through pressure drop measurements. Pressure drop fluctuations and expanded bed height fluctuations via fast Fourier transform were analyzed and compared. The complete and accurate experimental data reported in this study could provide a benchmark data set for various computational fluid dynamics models validation, calibration, and identification.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16843