Simulation of microtearing turbulence in national spherical torus experiment
Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to consid...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2012-05, Vol.19 (5), p.056119-056119-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056119-10 |
---|---|
container_issue | 5 |
container_start_page | 056119 |
container_title | Physics of plasmas |
container_volume | 19 |
creator | Guttenfelder, W. Candy, J. Kaye, S. M. Nevins, W. M. Wang, E. Zhang, J. Bell, R. E. Crocker, N. A. Hammett, G. W. LeBlanc, B. P. Mikkelsen, D. R. Ren, Y. Yuh, H. |
description | Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence. |
doi_str_mv | 10.1063/1.3694104 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b8c866090a466eefdda0614a49f70d1089807990f454b7ab320fbc0dd1df76cc3</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK4e_AfBm4euLzZNmosgi6vCggcVvIU0TdxIN1mSFPTf224XPHl68-BjmBmELgksCLDyhixKJigBeoRmBGpRcMbp8ag5FIzRj1N0ltIXAFBW1TO0fnXbvlPZBY-DxVunY8hGRec_ce5j03fGa4Odx34PqQ6n3cZEpweVQ-wTNt-74d8an8_RiVVdMheHO0fvq4e35VOxfnl8Xt6vC11ynoum1jVjIEBRxoyxbauAEaqosBzaMXUNXAiwtKINV015C7bR0LaktZxpXc7R1eQbUnYyaZeN3ujgvdFZkorRuhIDdD1BQ6OUorFyN6RU8UcSkONWksjDVgN7N7Gj177n__DfYDJYOQ1W_gIzQHJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of microtearing turbulence in national spherical torus experiment</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Guttenfelder, W. ; Candy, J. ; Kaye, S. M. ; Nevins, W. M. ; Wang, E. ; Zhang, J. ; Bell, R. E. ; Crocker, N. A. ; Hammett, G. W. ; LeBlanc, B. P. ; Mikkelsen, D. R. ; Ren, Y. ; Yuh, H.</creator><creatorcontrib>Guttenfelder, W. ; Candy, J. ; Kaye, S. M. ; Nevins, W. M. ; Wang, E. ; Zhang, J. ; Bell, R. E. ; Crocker, N. A. ; Hammett, G. W. ; LeBlanc, B. P. ; Mikkelsen, D. R. ; Ren, Y. ; Yuh, H. ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Princeton Univ., NJ (United States) ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Univ. of California, Los Angeles, CA (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3694104</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Physics</subject><ispartof>Physics of plasmas, 2012-05, Vol.19 (5), p.056119-056119-10</ispartof><rights>2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b8c866090a466eefdda0614a49f70d1089807990f454b7ab320fbc0dd1df76cc3</citedby><cites>FETCH-LOGICAL-c377t-b8c866090a466eefdda0614a49f70d1089807990f454b7ab320fbc0dd1df76cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3694104$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76353,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1564859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guttenfelder, W.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Kaye, S. M.</creatorcontrib><creatorcontrib>Nevins, W. M.</creatorcontrib><creatorcontrib>Wang, E.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Bell, R. E.</creatorcontrib><creatorcontrib>Crocker, N. A.</creatorcontrib><creatorcontrib>Hammett, G. W.</creatorcontrib><creatorcontrib>LeBlanc, B. P.</creatorcontrib><creatorcontrib>Mikkelsen, D. R.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Yuh, H.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Simulation of microtearing turbulence in national spherical torus experiment</title><title>Physics of plasmas</title><description>Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK4e_AfBm4euLzZNmosgi6vCggcVvIU0TdxIN1mSFPTf224XPHl68-BjmBmELgksCLDyhixKJigBeoRmBGpRcMbp8ag5FIzRj1N0ltIXAFBW1TO0fnXbvlPZBY-DxVunY8hGRec_ce5j03fGa4Odx34PqQ6n3cZEpweVQ-wTNt-74d8an8_RiVVdMheHO0fvq4e35VOxfnl8Xt6vC11ynoum1jVjIEBRxoyxbauAEaqosBzaMXUNXAiwtKINV015C7bR0LaktZxpXc7R1eQbUnYyaZeN3ujgvdFZkorRuhIDdD1BQ6OUorFyN6RU8UcSkONWksjDVgN7N7Gj177n__DfYDJYOQ1W_gIzQHJw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Guttenfelder, W.</creator><creator>Candy, J.</creator><creator>Kaye, S. M.</creator><creator>Nevins, W. M.</creator><creator>Wang, E.</creator><creator>Zhang, J.</creator><creator>Bell, R. E.</creator><creator>Crocker, N. A.</creator><creator>Hammett, G. W.</creator><creator>LeBlanc, B. P.</creator><creator>Mikkelsen, D. R.</creator><creator>Ren, Y.</creator><creator>Yuh, H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120501</creationdate><title>Simulation of microtearing turbulence in national spherical torus experiment</title><author>Guttenfelder, W. ; Candy, J. ; Kaye, S. M. ; Nevins, W. M. ; Wang, E. ; Zhang, J. ; Bell, R. E. ; Crocker, N. A. ; Hammett, G. W. ; LeBlanc, B. P. ; Mikkelsen, D. R. ; Ren, Y. ; Yuh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b8c866090a466eefdda0614a49f70d1089807990f454b7ab320fbc0dd1df76cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guttenfelder, W.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Kaye, S. M.</creatorcontrib><creatorcontrib>Nevins, W. M.</creatorcontrib><creatorcontrib>Wang, E.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Bell, R. E.</creatorcontrib><creatorcontrib>Crocker, N. A.</creatorcontrib><creatorcontrib>Hammett, G. W.</creatorcontrib><creatorcontrib>LeBlanc, B. P.</creatorcontrib><creatorcontrib>Mikkelsen, D. R.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Yuh, H.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guttenfelder, W.</au><au>Candy, J.</au><au>Kaye, S. M.</au><au>Nevins, W. M.</au><au>Wang, E.</au><au>Zhang, J.</au><au>Bell, R. E.</au><au>Crocker, N. A.</au><au>Hammett, G. W.</au><au>LeBlanc, B. P.</au><au>Mikkelsen, D. R.</au><au>Ren, Y.</au><au>Yuh, H.</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of microtearing turbulence in national spherical torus experiment</atitle><jtitle>Physics of plasmas</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>19</volume><issue>5</issue><spage>056119</spage><epage>056119-10</epage><pages>056119-056119-10</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3694104</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2012-05, Vol.19 (5), p.056119-056119-10 |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1564859 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Physics |
title | Simulation of microtearing turbulence in national spherical torus experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20microtearing%20turbulence%20in%20national%20spherical%20torus%20experiment&rft.jtitle=Physics%20of%20plasmas&rft.au=Guttenfelder,%20W.&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-05-01&rft.volume=19&rft.issue=5&rft.spage=056119&rft.epage=056119-10&rft.pages=056119-056119-10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3694104&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |