Simulation of microtearing turbulence in national spherical torus experiment

Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2012-05, Vol.19 (5), p.056119-056119-10
Hauptverfasser: Guttenfelder, W., Candy, J., Kaye, S. M., Nevins, W. M., Wang, E., Zhang, J., Bell, R. E., Crocker, N. A., Hammett, G. W., LeBlanc, B. P., Mikkelsen, D. R., Ren, Y., Yuh, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.3694104