First results from the implementation of the ITER diagnostic residual gas analyzer prototype at Wendelstein 7-X

Fusion reactors and long pulse fusion experiments heavily depend on a continuous fuel cycle, which requires detailed monitoring of exhaust gases. We have used a diagnostic residual gas analyzer (DRGA) built as a prototype for ITER and integrated it on the most advanced stellarator fusion experiment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2019-09, Vol.90 (9)
Hauptverfasser: Schlisio, G., Klepper, C. C., Harris, J. H., Biewer, T. M., Winters, V. R., Wenzel, U., Kornejew, P., Laqua, H., Krychowiak, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fusion reactors and long pulse fusion experiments heavily depend on a continuous fuel cycle, which requires detailed monitoring of exhaust gases. We have used a diagnostic residual gas analyzer (DRGA) built as a prototype for ITER and integrated it on the most advanced stellarator fusion experiment, Wendelstein 7-X (W7-X). The DRGA was equipped with a sampling tube and assessed for gas time of flight sample response, effects of magnetic field on gas detection and practical aspects of use in a state of the art fusion environment. The setup was successfully commissioned and operated and was used to observe the gas composition of W7-X exhaust gases. The measured time of flight gas response was found to be in the order of a second for a 7 m sample tube. High values of magnetic field were found to affect the partial pressure readings of the DRGA and suggest that additional shielding is necessary in future experimental campaigns.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5098125