Conceptual design and first results for a neutron detector with interaction localization capabilities
A new high-precision detector for studying neutrons from beta-delayed neutron emission and direct reaction studies is proposed. The Neutron dEtector with multi-neutron (denoted Xn) Tracking (NEXT) array is designed to maintain high intrinsic neutron detection efficiency while reducing uncertainties...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-12, Vol.946 (C), p.162528, Article 162528 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new high-precision detector for studying neutrons from beta-delayed neutron emission and direct reaction studies is proposed. The Neutron dEtector with multi-neutron (denoted Xn) Tracking (NEXT) array is designed to maintain high intrinsic neutron detection efficiency while reducing uncertainties in neutron energy measurements. A single NEXT module is composed of thin segments of plastic scintillator, each optically separated, capable of neutron-gamma discrimination. Each segmented module is coupled to position sensitive photodetectors enabling the high-precision determination of neutron time of arrival and interaction position within the active volume. A design study has been conducted based on simulations and experimental tests leading to the construction of prototype units. First results from measurements using a 252Cf neutron source and accelerator-produced monoenergetic neutrons are presented. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2019.162528 |