Sandia Fracture Challenge 3: detailing the Sandia Team Q failure prediction strategy

The third Sandia Fracture Challenge highlighted the geometric and material uncertainties introduced by modern additive manufacturing techniques. Tasked with the challenge of predicting failure of a complex additively-manufactured geometry made of 316L stainless steel, we combined a rigorous material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2019-07, Vol.218 (1-2), p.149-170
Hauptverfasser: Karlson, Kyle N., Alleman, Coleman, Foulk III, James W., Manktelow, Kevin L., Ostien, Jakob T., Stender, Michael E., Stershic, Andrew J., Veilleux, Michael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The third Sandia Fracture Challenge highlighted the geometric and material uncertainties introduced by modern additive manufacturing techniques. Tasked with the challenge of predicting failure of a complex additively-manufactured geometry made of 316L stainless steel, we combined a rigorous material calibration scheme with a number of statistical assessments of problem uncertainties. Specifically, we used optimization techniques to calibrate a rate-dependent and anisotropic Hill plasticity model to represent material deformation coupled with a damage model driven by void growth and nucleation. Through targeted simulation studies we assessed the influence of internal voids and surface flaws on the specimens of interest in the challenge which guided our material modeling choices. Employing the Kolmogorov–Smirnov test statistic, we developed a representative suite of simulations to account for the geometric variability of test specimens and the variability introduced by material parameter uncertainty. This approach allowed the team to successfully predict the failure mode of the experimental test population as well as the global response with a high degree of accuracy.
ISSN:0376-9429
1573-2673
DOI:10.1007/s10704-019-00365-x