ANN-based correlation for frictional pressure drop of non-azeotropic mixtures during cryogenic forced boiling

A crucial aspect of Joule-Thomson cryocooler analysis and optimization is the accurate estimation of frictional pressure drop. This paper presents a pressure drop model for boiling of non-azeotropic mixtures of nitrogen with hydrocarbons (e.g., methane, ethane, and propane) in microchannels. These r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2018-12, Vol.149 (C)
Hauptverfasser: Barroso-Maldonado, J. M., Montañez-Barrera, J. A., Belman-Flores, J. M., Aceves, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A crucial aspect of Joule-Thomson cryocooler analysis and optimization is the accurate estimation of frictional pressure drop. This paper presents a pressure drop model for boiling of non-azeotropic mixtures of nitrogen with hydrocarbons (e.g., methane, ethane, and propane) in microchannels. These refrigerant mixtures are important for their applicability in natural gas liquefaction plants. Here, the pressure drop model is based on computational intelligence techniques, and its performance is evaluated with the mean relative error (mre), and compared with three correlations previously selected as most accurate: Awad and Muzychka; Sun and Mishima; and Cicchitti et al.
ISSN:1359-4311