Heavy-ion collisions and fission dynamics with the time-dependent Hartree–Fock theory and its extensions

Microscopic methods and tools to describe nuclear dynamics have considerably been improved in the past few years. They are based on the time-dependent Hartree–Fock (TDHF) theory and its extensions to include pairing correlations and quantum fluctuations. The TDHF theory is the lowest level of approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in particle and nuclear physics 2018-11, Vol.103 (C), p.19-66
Hauptverfasser: Simenel, C., Umar, A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microscopic methods and tools to describe nuclear dynamics have considerably been improved in the past few years. They are based on the time-dependent Hartree–Fock (TDHF) theory and its extensions to include pairing correlations and quantum fluctuations. The TDHF theory is the lowest level of approximation of a range of methods to solve the quantum many-body problem, showing its universality to describe many-fermion dynamics at the mean-field level. The range of applications of TDHF to describe realistic systems allowing for detailed comparisons with experiment has considerably increased. For instance, TDHF is now commonly used to investigate fusion, multi-nucleon transfer and quasi-fission reactions. Thanks to the inclusion of pairing correlations, it has also recently led to breakthroughs in our description of the saddle to scission evolution, and, in particular, the non-adiabatic effects near scission. Beyond mean-field approaches such as the time-dependent random-phase approximation (TDRPA) and stochastic mean-field methods have reached the point where they can be used for realistic applications. We review recent progresses in both techniques and applications to heavy-ion collision and fission.
ISSN:0146-6410
1873-2224
DOI:10.1016/j.ppnp.2018.07.002