Exploring gasoline oxidation chemistry in jet stirred reactors

•N-alkanes rich gasoline surrogates are more reactive in low temperature oxidation.•Gasoline surrogates have similar reactivity in high temperature oxidation.•Gasoline surrogate kinetic model can successfully predict fuel reactivity. Recent decades have seen increasingly restrictive regulations appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-01, Vol.236 (C), p.1282-1292
Hauptverfasser: Chen, Bingjie, Wang, Zhandong, Wang, Jui-Yang, Wang, Haoyi, Togbé, Casimir, Alonso, Pablo Emmanuel Álvarez, Almalki, Maram, Mehl, Marco, Pitz, William J., Wagnon, Scott W., Zhang, Kuiwen, Kukkadapu, Goutham, Dagaut, Philippe, Mani Sarathy, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•N-alkanes rich gasoline surrogates are more reactive in low temperature oxidation.•Gasoline surrogates have similar reactivity in high temperature oxidation.•Gasoline surrogate kinetic model can successfully predict fuel reactivity. Recent decades have seen increasingly restrictive regulations applied to gasoline engines. Gasoline combustion chemistry must be investigated to achieve a better understanding and control of internal combustion engine efficiency and emissions. In this work, several gasoline fuels, namely the FACE (Fuel for Advanced Combustion Engines) gasolines, were selected as targets for oxidation study in jet-stirred reactors (JSR). The study is facilitated by formulating various gasoline surrogate mixtures with known hydrocarbon compositions to represent the real gasolines. Surrogates included binary mixtures of n-heptane and iso-octane, as well as more complex multi-component mixtures. The oxidation characteristics of FACE gasolines and their surrogates were experimentally examined in JSR-1 and numerically simulated under the following conditions: pressure 1 bar, temperature 500–1050 K, residence time 1.0 and 2.0 s, and two equivalence ratios (ϕ = 0.5 and 1.0). In the high temperature region, all real fuels and surrogates showed similar oxidation behavior, but in the low temperature region, a fuel’s octane number and composition had a significant effect on its JSR oxidation characteristics. Low octane number fuels displayed more low temperature reactivity, while fuels with similar octane number but a larger number of n-alkane components were more reactive. A gasoline surrogate kinetic model was examined with FACE gasoline experiments either measured in JSR-2, or taken from previous work under the following conditions: pressure 10 bar, temperature 530–1200 K, residence time 0.7 s, and three equivalence ratios (ϕ = 0.5, 1.0 and 2.0). Comparison between FACE gasoline experimental results with surrogate model predictions showed good agreement, demonstrating considerable potential for surrogate fuel kinetic modeling in engine simulations.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2018.09.055