Ephemerality of discrete methane vents in lake sediments

Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-05, Vol.43 (9), p.4374-4381
Hauptverfasser: Scandella, Benjamin P., Pillsbury, Liam, Weber, Thomas, Ruppel, Carolyn, Hemond, Harold F., Juanes, Ruben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4381
container_issue 9
container_start_page 4374
container_title Geophysical research letters
container_volume 43
creator Scandella, Benjamin P.
Pillsbury, Liam
Weber, Thomas
Ruppel, Carolyn
Hemond, Harold F.
Juanes, Ruben
description Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high‐flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high‐resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high‐flux periods) or days (for low‐flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long‐term, lake‐wide ebullition dynamics may be modeled without resolving the fine‐scale spatial structure of venting. Key Points We present direct high‐resolution, months‐long measurements of methane venting from lake sediments We show that gas vents are ephemeral and not persistent as previously assumed Our study provides an unprecedented detailed view of the spatiotemporal signature of methane flux
doi_str_mv 10.1002/2016GL068668
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808710528</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5583-751b2ca0cc3e5c550cb37814fb0cd9369a3171d09b9f0a97ffe0fdec6219628c3</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtbHzQ-w6MWD1Zlk8zpKqVUoCKLnkGZn6dZ91M1W6bd3y3oQD8VThvBjmP8MYxcItwjA7zigms1BGaXMARuhTdOxAdCHbARg-5prdcxOYlwBgACBI2am6yVV1Pqy6LZJkydZEUNLHSUVdUtfU_JJdReTok5K_05JpKyodj9n7Cj3ZaTzn_eUvT1MXyeP4_nz7GlyPx97KY0Ya4kLHjyEIEgGKSEshDaY5gsImRXKeoEaM7ALm4O3Os8J8oyC4mgVN0GcssuhbxO7wsVQdBSWoalrCp1DKbURqkfXA1q3zceGYueqPgaVZR-g2USHhstUcW7MPygYjSD5jl79oatm09Z9Wsf7dQNqadJ9CrVFbiTibsKbQYW2ibGl3K3bovLt1iG43fHc7-P1nA_8qyhpu9e62ctcplwL8Q2bypbd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791285116</pqid></control><display><type>article</type><title>Ephemerality of discrete methane vents in lake sediments</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Scandella, Benjamin P. ; Pillsbury, Liam ; Weber, Thomas ; Ruppel, Carolyn ; Hemond, Harold F. ; Juanes, Ruben</creator><creatorcontrib>Scandella, Benjamin P. ; Pillsbury, Liam ; Weber, Thomas ; Ruppel, Carolyn ; Hemond, Harold F. ; Juanes, Ruben ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high‐flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high‐resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high‐flux periods) or days (for low‐flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long‐term, lake‐wide ebullition dynamics may be modeled without resolving the fine‐scale spatial structure of venting. Key Points We present direct high‐resolution, months‐long measurements of methane venting from lake sediments We show that gas vents are ephemeral and not persistent as previously assumed Our study provides an unprecedented detailed view of the spatiotemporal signature of methane flux</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068668</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Biogeochemistry ; Climate change ; Columns (structural) ; Dynamics ; ebullition ; ENVIRONMENTAL SCIENCES ; Fluctuations ; Flux ; Freshwater ; Global warming ; Greenhouse effect ; Greenhouse gases ; hydroacoustics ; Hydrostatic pressure ; Inland waters ; Lake deposits ; Lake sediments ; Lakes ; Methane ; methane emissions ; methane venting ; Multibeam sonar ; Oceans ; Resolution ; Sediment ; Sediments ; Signatures ; Sonar ; Vents ; Water column</subject><ispartof>Geophysical research letters, 2016-05, Vol.43 (9), p.4374-4381</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5583-751b2ca0cc3e5c550cb37814fb0cd9369a3171d09b9f0a97ffe0fdec6219628c3</citedby><cites>FETCH-LOGICAL-a5583-751b2ca0cc3e5c550cb37814fb0cd9369a3171d09b9f0a97ffe0fdec6219628c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068668$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068668$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scandella, Benjamin P.</creatorcontrib><creatorcontrib>Pillsbury, Liam</creatorcontrib><creatorcontrib>Weber, Thomas</creatorcontrib><creatorcontrib>Ruppel, Carolyn</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Juanes, Ruben</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Ephemerality of discrete methane vents in lake sediments</title><title>Geophysical research letters</title><description>Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high‐flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high‐resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high‐flux periods) or days (for low‐flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long‐term, lake‐wide ebullition dynamics may be modeled without resolving the fine‐scale spatial structure of venting. Key Points We present direct high‐resolution, months‐long measurements of methane venting from lake sediments We show that gas vents are ephemeral and not persistent as previously assumed Our study provides an unprecedented detailed view of the spatiotemporal signature of methane flux</description><subject>Biogeochemistry</subject><subject>Climate change</subject><subject>Columns (structural)</subject><subject>Dynamics</subject><subject>ebullition</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Freshwater</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>hydroacoustics</subject><subject>Hydrostatic pressure</subject><subject>Inland waters</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Methane</subject><subject>methane emissions</subject><subject>methane venting</subject><subject>Multibeam sonar</subject><subject>Oceans</subject><subject>Resolution</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Signatures</subject><subject>Sonar</subject><subject>Vents</subject><subject>Water column</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLAzEQB_AgCtbHzQ-w6MWD1Zlk8zpKqVUoCKLnkGZn6dZ91M1W6bd3y3oQD8VThvBjmP8MYxcItwjA7zigms1BGaXMARuhTdOxAdCHbARg-5prdcxOYlwBgACBI2am6yVV1Pqy6LZJkydZEUNLHSUVdUtfU_JJdReTok5K_05JpKyodj9n7Cj3ZaTzn_eUvT1MXyeP4_nz7GlyPx97KY0Ya4kLHjyEIEgGKSEshDaY5gsImRXKeoEaM7ALm4O3Os8J8oyC4mgVN0GcssuhbxO7wsVQdBSWoalrCp1DKbURqkfXA1q3zceGYueqPgaVZR-g2USHhstUcW7MPygYjSD5jl79oatm09Z9Wsf7dQNqadJ9CrVFbiTibsKbQYW2ibGl3K3bovLt1iG43fHc7-P1nA_8qyhpu9e62ctcplwL8Q2bypbd</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Scandella, Benjamin P.</creator><creator>Pillsbury, Liam</creator><creator>Weber, Thomas</creator><creator>Ruppel, Carolyn</creator><creator>Hemond, Harold F.</creator><creator>Juanes, Ruben</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160516</creationdate><title>Ephemerality of discrete methane vents in lake sediments</title><author>Scandella, Benjamin P. ; Pillsbury, Liam ; Weber, Thomas ; Ruppel, Carolyn ; Hemond, Harold F. ; Juanes, Ruben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5583-751b2ca0cc3e5c550cb37814fb0cd9369a3171d09b9f0a97ffe0fdec6219628c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biogeochemistry</topic><topic>Climate change</topic><topic>Columns (structural)</topic><topic>Dynamics</topic><topic>ebullition</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Freshwater</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>hydroacoustics</topic><topic>Hydrostatic pressure</topic><topic>Inland waters</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Methane</topic><topic>methane emissions</topic><topic>methane venting</topic><topic>Multibeam sonar</topic><topic>Oceans</topic><topic>Resolution</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Signatures</topic><topic>Sonar</topic><topic>Vents</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scandella, Benjamin P.</creatorcontrib><creatorcontrib>Pillsbury, Liam</creatorcontrib><creatorcontrib>Weber, Thomas</creatorcontrib><creatorcontrib>Ruppel, Carolyn</creatorcontrib><creatorcontrib>Hemond, Harold F.</creatorcontrib><creatorcontrib>Juanes, Ruben</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scandella, Benjamin P.</au><au>Pillsbury, Liam</au><au>Weber, Thomas</au><au>Ruppel, Carolyn</au><au>Hemond, Harold F.</au><au>Juanes, Ruben</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ephemerality of discrete methane vents in lake sediments</atitle><jtitle>Geophysical research letters</jtitle><date>2016-05-16</date><risdate>2016</risdate><volume>43</volume><issue>9</issue><spage>4374</spage><epage>4381</epage><pages>4374-4381</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high‐flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high‐resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high‐flux periods) or days (for low‐flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long‐term, lake‐wide ebullition dynamics may be modeled without resolving the fine‐scale spatial structure of venting. Key Points We present direct high‐resolution, months‐long measurements of methane venting from lake sediments We show that gas vents are ephemeral and not persistent as previously assumed Our study provides an unprecedented detailed view of the spatiotemporal signature of methane flux</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL068668</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-05, Vol.43 (9), p.4374-4381
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_1557836
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Biogeochemistry
Climate change
Columns (structural)
Dynamics
ebullition
ENVIRONMENTAL SCIENCES
Fluctuations
Flux
Freshwater
Global warming
Greenhouse effect
Greenhouse gases
hydroacoustics
Hydrostatic pressure
Inland waters
Lake deposits
Lake sediments
Lakes
Methane
methane emissions
methane venting
Multibeam sonar
Oceans
Resolution
Sediment
Sediments
Signatures
Sonar
Vents
Water column
title Ephemerality of discrete methane vents in lake sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ephemerality%20of%20discrete%20methane%20vents%20in%20lake%20sediments&rft.jtitle=Geophysical%20research%20letters&rft.au=Scandella,%20Benjamin%20P.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-05-16&rft.volume=43&rft.issue=9&rft.spage=4374&rft.epage=4381&rft.pages=4374-4381&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068668&rft_dat=%3Cproquest_osti_%3E1808710528%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791285116&rft_id=info:pmid/&rfr_iscdi=true