Ephemerality of discrete methane vents in lake sediments

Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-05, Vol.43 (9), p.4374-4381
Hauptverfasser: Scandella, Benjamin P., Pillsbury, Liam, Weber, Thomas, Ruppel, Carolyn, Hemond, Harold F., Juanes, Ruben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high‐flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high‐resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high‐flux periods) or days (for low‐flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long‐term, lake‐wide ebullition dynamics may be modeled without resolving the fine‐scale spatial structure of venting. Key Points We present direct high‐resolution, months‐long measurements of methane venting from lake sediments We show that gas vents are ephemeral and not persistent as previously assumed Our study provides an unprecedented detailed view of the spatiotemporal signature of methane flux
ISSN:0094-8276
1944-8007
DOI:10.1002/2016GL068668