Form factors of two-hadron states from a covariant finite-volume formalism
In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2+J→2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particul...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-08, Vol.100 (3), p.1, Article 034511 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2+J→2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particular focus is given to the role of single-particle form factors in disentangling finite-volume effects from the triangle diagram that arise when J couples to one of the two hadrons. This also leads to a new finite-volume function, denoted G, the numerical evaluation of which is described in detail. As an example we discuss the determination of the ππ+J→ππ amplitude in the ρ channel, for which the single-pion form factor, Fπ(Q2), as well as the scattering phase, δππ, are required to remove all power-law finite-volume effects. The formalism presented here holds for local currents with arbitrary Lorentz structure, and we give specific examples of insertions with up to two Lorentz indices. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.100.034511 |