Finite-temperature orbital-free DFT molecular dynamics: Coupling Profess and Quantum Espresso
Implementation of orbital-free free-energy functionals in the Profess code and the coupling of Profess with the Quantum Espresso code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence pa...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2014-12, Vol.185 (12), p.3240-3249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Implementation of orbital-free free-energy functionals in the Profess code and the coupling of Profess with the Quantum Espresso code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence parameters, etc.) as for Kohn–Sham (KS) DFT. All the non-interacting free-energy functionals implemented are single-point: the local density approximation (LDA; also known as finite-T Thomas–Fermi, ftTF), the second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently introduced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-performance computer systems. Example MD simulations on H over a temperature range 2000K≤T≤4,000,000K are reported, with timings on small clusters (16–128 cores) and even laptops. With respect to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds of times faster. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2014.08.023 |