Stability analysis of nonlinear two-grid method for multigroup neutron diffusion problems
We present theoretical analysis of a nonlinear acceleration method for solving multigroup neutron diffusion problems. This method is formulated with two energy grids that are defined by (i) fine-energy groups structure and (ii) coarse grid with just a single energy group. The coarse-grid equations a...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-10, Vol.346 (C), p.278-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present theoretical analysis of a nonlinear acceleration method for solving multigroup neutron diffusion problems. This method is formulated with two energy grids that are defined by (i) fine-energy groups structure and (ii) coarse grid with just a single energy group. The coarse-grid equations are derived by averaging of the multigroup diffusion equations over energy. The method uses a nonlinear prolongation operator. We perform stability analysis of iteration algorithms for inhomogeneous (fixed-source) and eigenvalue neutron diffusion problems. To apply Fourier analysis the equations of the method are linearized about solutions of infinite-medium problems. The developed analysis enables us to predict convergence properties of this two-grid method in different types of problems. Numerical results of problems in 2D Cartesian geometry are presented to confirm theoretical predictions. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2017.06.014 |