3D nano-architected metallic glass: Size effect suppresses catastrophic failure

We investigate the mechanical behavior of 3D periodically architected metallic glass nanolattices, constructed from hollow beams of sputtered Zr-Ni-Al metallic glass. Nanolattices composed of beams with different wall thicknesses are fabricated by varying the sputter deposition time, resulting in na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2017-07, Vol.133 (C), p.393-407
Hauptverfasser: Liontas, Rachel, Greer, Julia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the mechanical behavior of 3D periodically architected metallic glass nanolattices, constructed from hollow beams of sputtered Zr-Ni-Al metallic glass. Nanolattices composed of beams with different wall thicknesses are fabricated by varying the sputter deposition time, resulting in nanolattices with median wall thicknesses of ∼88 nm, ∼57 nm, ∼38 nm, ∼30 nm, ∼20 nm, and ∼10 nm. Uniaxial compression experiments conducted inside a scanning electron microscope reveal a transition from brittle, catastrophic failure in thicker-walled nanolattices (median wall thicknesses of ∼88 and ∼57 nm) to deformable, gradual, layer-by-layer collapse in thinner-walled nanolattices (median wall thicknesses of ∼38 nm and less). As the nanolattice wall thickness is varied, large differences in deformability are manifested through the severity of strain bursts, nanolattice recovery after compression, and in-situ images obtained during compression experiments. We explain the brittle-to-deformable transition that occurs as the nanolattice wall thickness decreases in terms of the “smaller is more deformable” material size effect that arises in nano-sized metallic glasses. This work demonstrates that the nano-induced failure-suppression size effect that emerges in small-scale metallic glasses can be proliferated to larger-scale materials by the virtue of architecting. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2017.05.019