Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method
We develop a discretely entropy-stable line-based discontinuous Galerkin method for hyperbolic conservation laws based on a flux differencing technique. By using standard entropy-stable and entropy-conservative numerical flux functions, this method guarantees that the discrete integral of the entrop...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2019-07, Vol.80 (1), p.376-402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a discretely entropy-stable line-based discontinuous Galerkin method for hyperbolic conservation laws based on a flux differencing technique. By using standard entropy-stable and entropy-conservative numerical flux functions, this method guarantees that the discrete integral of the entropy is non-increasing. This nonlinear entropy stability property is important for the robustness of the method, in particular when applied to problems with discontinuous solutions or when the mesh is under-resolved. This line-based method is significantly less computationally expensive than a standard DG method. Numerical results are shown demonstrating the effectiveness of the method on a variety of test cases, including Burgers’ equation and the Euler equations, in one, two, and three spatial dimensions. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-019-00942-1 |