MnO@Al2O3 with high cycle performance via depressing solution of Mn for lithium-ion batteries anode
•MnO nano particle.•Al2O3 coating.•Prevent Mn elements dissolution and SEI formation.•Decreases capacity loss and maintains structure stability.•Initial charging capacity of 822 mA h g−1 at current rate of 100 mA g−1. The capacities fade of manganese oxide originating from the well-known Mn dissolut...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2018-11, Vol.457 (C), p.831-837 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •MnO nano particle.•Al2O3 coating.•Prevent Mn elements dissolution and SEI formation.•Decreases capacity loss and maintains structure stability.•Initial charging capacity of 822 mA h g−1 at current rate of 100 mA g−1.
The capacities fade of manganese oxide originating from the well-known Mn dissolution in electrolyte. Suppressing the dissolution of Mn elements can result in a significant enhancement of the cycling performance of anode materials. Surface coating of active material is one of the most effective strategies, especially; aluminum oxide is most widely adopted coating material to improve anode materials performance. Here we report, Al2O3 layer is coated on the surface and little Al-ions are diffused into MnO electrode prevents dissolution of manganese elements in electrolyte, decrease capacity fade and maintain structure stability of the active material. MnO@Al2O3 composite electrode delivers an initial discharging/charging capacities of 1390/822 mA h g−1 at current rate of 100 mA g−1 and maintains high reversible charging capacity of 855 mA h g−1 after 100 cycles. Al2O3 coating prevents decomposition of manganese oxide in electrolyte and enhances the cycling stability. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2018.06.236 |