Machine learning for data-driven discovery in solid Earth geoscience

Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-03, Vol.363 (6433)
Hauptverfasser: Bergen, Karianne J, Johnson, Paul A, de Hoop, Maarten V, Beroza, Gregory C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6433
container_start_page
container_title Science (American Association for the Advancement of Science)
container_volume 363
creator Bergen, Karianne J
Johnson, Paul A
de Hoop, Maarten V
Beroza, Gregory C
description Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth's subsurface to direct observation. Substantial increases in data availability and in the increasingly realistic character of computer simulations hold promise for accelerating progress, but developing a deeper understanding based on these capabilities is itself challenging. Machine learning will play a key role in this effort. We review the state of the field and make recommendations for how progress might be broadened and accelerated.
doi_str_mv 10.1126/science.aau0323
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1547596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196524311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-c4450a8ee48caa0f1a37866e8711e6340c7e1993f044639159d0ebac368c3ddd3</originalsourceid><addsrcrecordid>eNpdkTFv2zAQhYkiReO4nbsVQrJkkXMUKYocCydNArjo0s4EQ55sGjKZkFIA__uysNIh0w333Xu49wj5SmFFaSNusvUYLK6MmYA17ANZUFBtrRpgZ2QBwEQtoWvPyUXOe4CyU-wTOWcglVTAFuT2p7E7H7Aa0KTgw7bqY6qcGU3tkn_FUDmfbXzFdKx8qHIcvKvuTBp31RbjbP-ZfOzNkPHLPJfkz4-73-uHevPr_nH9fVMbLpuxtpy3YCQil9YY6KlhnRQCZUcpCsbBdkiVYj1wLpiirXKAT8YyIS1zzrEluTzpxjx6XcxHtDsbQ0A7atryrlWiQNcn6DnFlwnzqA_lAxwGEzBOWTdUibbhjNKCXr1D93FKobygm5IglVxIKNTNibIp5pyw18_JH0w6agr6Xwt6jkHPLZSLb7Pu9HRA959_i539BWj5g08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203184680</pqid></control><display><type>article</type><title>Machine learning for data-driven discovery in solid Earth geoscience</title><source>American Association for the Advancement of Science</source><creator>Bergen, Karianne J ; Johnson, Paul A ; de Hoop, Maarten V ; Beroza, Gregory C</creator><creatorcontrib>Bergen, Karianne J ; Johnson, Paul A ; de Hoop, Maarten V ; Beroza, Gregory C</creatorcontrib><description>Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth's subsurface to direct observation. Substantial increases in data availability and in the increasingly realistic character of computer simulations hold promise for accelerating progress, but developing a deeper understanding based on these capabilities is itself challenging. Machine learning will play a key role in this effort. We review the state of the field and make recommendations for how progress might be broadened and accelerated.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau0323</identifier><identifier>PMID: 30898903</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Acoustic emission ; Algorithms ; Artificial intelligence ; Atmospheric models ; Automation ; Benchmarks ; Biological activity ; Classification ; Communities ; Computer memory ; Computer simulation ; Computers ; Data processing ; Data sources ; Datasets ; Driving ability ; Earth science ; Earthquakes ; Fiber optics ; Fresh water ; Freshwater environments ; Geologic mapping ; Groundwater ; Groundwater reservoirs ; Inverse problems ; Learning algorithms ; Lidar ; Machine learning ; Mathematical models ; Mineral resources ; Oceans ; Open data ; Optical fibers ; Organic chemistry ; Predictions ; Remote sensing ; Rheology ; Seismic activity ; Teaching Methods ; Topology ; Urbanization ; Viscoelasticity ; Volcanic ash</subject><ispartof>Science (American Association for the Advancement of Science), 2019-03, Vol.363 (6433)</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-c4450a8ee48caa0f1a37866e8711e6340c7e1993f044639159d0ebac368c3ddd3</citedby><cites>FETCH-LOGICAL-a482t-c4450a8ee48caa0f1a37866e8711e6340c7e1993f044639159d0ebac368c3ddd3</cites><orcidid>0000-0002-0927-4003 ; 0000-0003-2474-9115 ; 0000-0002-6333-0379 ; 0000000209274003 ; 0000000324749115 ; 0000000263330379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30898903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1547596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergen, Karianne J</creatorcontrib><creatorcontrib>Johnson, Paul A</creatorcontrib><creatorcontrib>de Hoop, Maarten V</creatorcontrib><creatorcontrib>Beroza, Gregory C</creatorcontrib><title>Machine learning for data-driven discovery in solid Earth geoscience</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth's subsurface to direct observation. Substantial increases in data availability and in the increasingly realistic character of computer simulations hold promise for accelerating progress, but developing a deeper understanding based on these capabilities is itself challenging. Machine learning will play a key role in this effort. We review the state of the field and make recommendations for how progress might be broadened and accelerated.</description><subject>Acoustic emission</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Atmospheric models</subject><subject>Automation</subject><subject>Benchmarks</subject><subject>Biological activity</subject><subject>Classification</subject><subject>Communities</subject><subject>Computer memory</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Data processing</subject><subject>Data sources</subject><subject>Datasets</subject><subject>Driving ability</subject><subject>Earth science</subject><subject>Earthquakes</subject><subject>Fiber optics</subject><subject>Fresh water</subject><subject>Freshwater environments</subject><subject>Geologic mapping</subject><subject>Groundwater</subject><subject>Groundwater reservoirs</subject><subject>Inverse problems</subject><subject>Learning algorithms</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mineral resources</subject><subject>Oceans</subject><subject>Open data</subject><subject>Optical fibers</subject><subject>Organic chemistry</subject><subject>Predictions</subject><subject>Remote sensing</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Teaching Methods</subject><subject>Topology</subject><subject>Urbanization</subject><subject>Viscoelasticity</subject><subject>Volcanic ash</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkTFv2zAQhYkiReO4nbsVQrJkkXMUKYocCydNArjo0s4EQ55sGjKZkFIA__uysNIh0w333Xu49wj5SmFFaSNusvUYLK6MmYA17ANZUFBtrRpgZ2QBwEQtoWvPyUXOe4CyU-wTOWcglVTAFuT2p7E7H7Aa0KTgw7bqY6qcGU3tkn_FUDmfbXzFdKx8qHIcvKvuTBp31RbjbP-ZfOzNkPHLPJfkz4-73-uHevPr_nH9fVMbLpuxtpy3YCQil9YY6KlhnRQCZUcpCsbBdkiVYj1wLpiirXKAT8YyIS1zzrEluTzpxjx6XcxHtDsbQ0A7atryrlWiQNcn6DnFlwnzqA_lAxwGEzBOWTdUibbhjNKCXr1D93FKobygm5IglVxIKNTNibIp5pyw18_JH0w6agr6Xwt6jkHPLZSLb7Pu9HRA959_i539BWj5g08</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Bergen, Karianne J</creator><creator>Johnson, Paul A</creator><creator>de Hoop, Maarten V</creator><creator>Beroza, Gregory C</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0927-4003</orcidid><orcidid>https://orcid.org/0000-0003-2474-9115</orcidid><orcidid>https://orcid.org/0000-0002-6333-0379</orcidid><orcidid>https://orcid.org/0000000209274003</orcidid><orcidid>https://orcid.org/0000000324749115</orcidid><orcidid>https://orcid.org/0000000263330379</orcidid></search><sort><creationdate>20190322</creationdate><title>Machine learning for data-driven discovery in solid Earth geoscience</title><author>Bergen, Karianne J ; Johnson, Paul A ; de Hoop, Maarten V ; Beroza, Gregory C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-c4450a8ee48caa0f1a37866e8711e6340c7e1993f044639159d0ebac368c3ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic emission</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Atmospheric models</topic><topic>Automation</topic><topic>Benchmarks</topic><topic>Biological activity</topic><topic>Classification</topic><topic>Communities</topic><topic>Computer memory</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Data processing</topic><topic>Data sources</topic><topic>Datasets</topic><topic>Driving ability</topic><topic>Earth science</topic><topic>Earthquakes</topic><topic>Fiber optics</topic><topic>Fresh water</topic><topic>Freshwater environments</topic><topic>Geologic mapping</topic><topic>Groundwater</topic><topic>Groundwater reservoirs</topic><topic>Inverse problems</topic><topic>Learning algorithms</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mineral resources</topic><topic>Oceans</topic><topic>Open data</topic><topic>Optical fibers</topic><topic>Organic chemistry</topic><topic>Predictions</topic><topic>Remote sensing</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Teaching Methods</topic><topic>Topology</topic><topic>Urbanization</topic><topic>Viscoelasticity</topic><topic>Volcanic ash</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergen, Karianne J</creatorcontrib><creatorcontrib>Johnson, Paul A</creatorcontrib><creatorcontrib>de Hoop, Maarten V</creatorcontrib><creatorcontrib>Beroza, Gregory C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergen, Karianne J</au><au>Johnson, Paul A</au><au>de Hoop, Maarten V</au><au>Beroza, Gregory C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for data-driven discovery in solid Earth geoscience</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>363</volume><issue>6433</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth's subsurface to direct observation. Substantial increases in data availability and in the increasingly realistic character of computer simulations hold promise for accelerating progress, but developing a deeper understanding based on these capabilities is itself challenging. Machine learning will play a key role in this effort. We review the state of the field and make recommendations for how progress might be broadened and accelerated.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30898903</pmid><doi>10.1126/science.aau0323</doi><orcidid>https://orcid.org/0000-0002-0927-4003</orcidid><orcidid>https://orcid.org/0000-0003-2474-9115</orcidid><orcidid>https://orcid.org/0000-0002-6333-0379</orcidid><orcidid>https://orcid.org/0000000209274003</orcidid><orcidid>https://orcid.org/0000000324749115</orcidid><orcidid>https://orcid.org/0000000263330379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-03, Vol.363 (6433)
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1547596
source American Association for the Advancement of Science
subjects Acoustic emission
Algorithms
Artificial intelligence
Atmospheric models
Automation
Benchmarks
Biological activity
Classification
Communities
Computer memory
Computer simulation
Computers
Data processing
Data sources
Datasets
Driving ability
Earth science
Earthquakes
Fiber optics
Fresh water
Freshwater environments
Geologic mapping
Groundwater
Groundwater reservoirs
Inverse problems
Learning algorithms
Lidar
Machine learning
Mathematical models
Mineral resources
Oceans
Open data
Optical fibers
Organic chemistry
Predictions
Remote sensing
Rheology
Seismic activity
Teaching Methods
Topology
Urbanization
Viscoelasticity
Volcanic ash
title Machine learning for data-driven discovery in solid Earth geoscience
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20data-driven%20discovery%20in%20solid%20Earth%20geoscience&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Bergen,%20Karianne%20J&rft.date=2019-03-22&rft.volume=363&rft.issue=6433&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau0323&rft_dat=%3Cproquest_osti_%3E2196524311%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203184680&rft_id=info:pmid/30898903&rfr_iscdi=true