Machine learning for data-driven discovery in solid Earth geoscience
Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-03, Vol.363 (6433) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences is an increasingly important task. It is made challenging by the complex, interacting, and multiscale processes needed to understand Earth's behavior and by the inaccessibility of nearly all of Earth's subsurface to direct observation. Substantial increases in data availability and in the increasingly realistic character of computer simulations hold promise for accelerating progress, but developing a deeper understanding based on these capabilities is itself challenging. Machine learning will play a key role in this effort. We review the state of the field and make recommendations for how progress might be broadened and accelerated. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aau0323 |