Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and < 10-nanoampere read currents are required for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6440), p.570-574
Hauptverfasser: Fuller, Elliot J., Keene, Scott T., Melianas, Armantas, Wang, Zhongrui, Agarwal, Sapan, Li, Yiyang, Tuchman, Yaakov, James, Conrad D., Marinella, Matthew J., Yang, J. Joshua, Salleo, Alberto, Talin, A. Alec
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and < 10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents < 10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support 1-megahertz write-read frequencies.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaw5581