High definition large area mapping of geological samples using a Maia detector array in the Nuclear Microprobe
A Maia detector array has been adapted and installed on the CSIRO-MARC Nuclear Microprobe. Maia uses an annular array of 384 silicon detectors to provide a solid-angle of 1.3 sr to improve the collection of X-rays induced by Particle Induced X-ray Emission (PIXE) using a micron focussed MeV proton b...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2019-06, Vol.449 (C), p.11-16 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Maia detector array has been adapted and installed on the CSIRO-MARC Nuclear Microprobe. Maia uses an annular array of 384 silicon detectors to provide a solid-angle of 1.3 sr to improve the collection of X-rays induced by Particle Induced X-ray Emission (PIXE) using a micron focussed MeV proton beam. It features event-by-event data acquisition with dead-time correction and pileup rejection and a total count-rate capacity above 10 M/s, versatile stage and beam scanning modes (coupled to the DAQ-36 system described previously) to cater for a variety of sample configuration and experimental needs, precise measurement of transit time and integration of beam fluence per pixel, and spectral deconvolution of event data in real-time using the Dynamic Analysis method to provide element images during data collection. Here we demonstrate the system on thin sections made from geological samples extracted from active seafloor hydrothermal vents in the PACMANUS hydrothermal field in Papua New Guinea. |
---|---|
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/j.nimb.2019.04.031 |