Ferromagnetic Resonance Spin Pumping and Electrical Spin Injection in Silicon-Based Metal-Oxide-Semiconductor Heterostructures
We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage V_{s} that is suppressed as an applied field is rotated to the out-of-plane direc...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-12, Vol.115 (24), p.246602-246602, Article 246602 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage V_{s} that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of V_{s} between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field H_{app}^{z}. We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.115.246602 |