Derivative-free optimization methods

In many optimization problems arising from scientific, engineering and artificial intelligence applications, objective and constraint functions are available only as the output of a black-box or simulation oracle that does not provide derivative information. Such settings necessitate the use of meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta numerica 2019-05, Vol.28 (2010), p.287-404
Hauptverfasser: Larson, Jeffrey, Menickelly, Matt, Wild, Stefan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many optimization problems arising from scientific, engineering and artificial intelligence applications, objective and constraint functions are available only as the output of a black-box or simulation oracle that does not provide derivative information. Such settings necessitate the use of methods for derivative-free, or zeroth-order, optimization. We provide a review and perspectives on developments in these methods, with an emphasis on highlighting recent developments and on unifying treatment of such problems in the non-linear optimization and machine learning literature. We categorize methods based on assumed properties of the black-box functions, as well as features of the methods. We first overview the primary setting of deterministic methods applied to unconstrained, non-convex optimization problems where the objective function is defined by a deterministic black-box oracle. We then discuss developments in randomized methods, methods that assume some additional structure about the objective (including convexity, separability and general non-smooth compositions), methods for problems where the output of the black-box oracle is stochastic, and methods for handling different types of constraints.
ISSN:0962-4929
1474-0508
DOI:10.1017/S0962492919000060