The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH
A challenging requirement posed by next-generation observations is a firm theoretical grasp of the impact of baryons on structure formation. Cosmological hydrodynamic simulations modeling gas physics are vital in this regard. A high degree of modeling flexibility exists in this space, making it impo...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-06, Vol.877 (2), p.85, Article 85 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A challenging requirement posed by next-generation observations is a firm theoretical grasp of the impact of baryons on structure formation. Cosmological hydrodynamic simulations modeling gas physics are vital in this regard. A high degree of modeling flexibility exists in this space, making it important to explore a range of methods in order to gauge the accuracy of simulation predictions. We present results from the first cosmological simulation using Conservative Reproducing Kernel Smoothed Particle Hydrodynamics (CRK-SPH). We employ two simulations: one evolved purely under gravity, and the other with nonradiative hydrodynamics. Each contains 2 × 23043 cold dark matter plus baryon particles in an box. We compare statistics to previous nonradiative simulations including power spectra, mass functions, baryon fractions, and concentration. We find self-similar radial profiles of gas temperature, entropy, and pressure and show that a simple analytic model recovers these results to better than 40% over two orders of magnitude in mass. We quantify the level of nonthermal pressure support in halos and demonstrate that hydrostatic mass estimates are biased low by 24% (10%) for halos of mass . We compute angular power spectra for the thermal and kinematic Sunyaev-Zel'dovich effects and find good agreement with the low- Planck measurements. Finally, artificial scattering between particles of unequal mass is shown to have a large impact on the gravity-only run, and we highlight the importance of better understanding this issue in hydrodynamic applications. This is the first in a simulation campaign using CRK-SPH, with future work including subresolution gas treatments. |
---|---|
ISSN: | 0004-637X 1538-4357 1538-4357 |
DOI: | 10.3847/1538-4357/ab1b31 |