Power Excursion Mitigation for Flexgrid Defragmentation With Machine Learning

Flexgrid optical networking relies on spectrum defragmentation to groom channel wavelengths and improve spectral efficiency. Various defragmentation methods—hop, make-before-break, and sweep—interact with the power dynamics of erbium-doped fiber amplifiers (EDFA) differently and result in undesired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2017-12, Vol.10 (1)
Hauptverfasser: Huang, Yishen, Cho, Patricia B., Samadi, Payman, Bergman, Keren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexgrid optical networking relies on spectrum defragmentation to groom channel wavelengths and improve spectral efficiency. Various defragmentation methods—hop, make-before-break, and sweep—interact with the power dynamics of erbium-doped fiber amplifiers (EDFA) differently and result in undesired power excursions that exacerbate the post-EDFA power variance. Here we present a machine learning engine that characterizes the channel dependence of power excursions from historical data. We further demonstrate that post-EDFA power variance during hop, make-before-break, and sweep defragmentation methods can be greatly mitigated by the trained machine learning engine with automated and expedited power adjustment predictions.
ISSN:1943-0620
1943-0639