Spectral Signatures of Moisture–Convection Feedbacks over the Indian Ocean
Positive feedbacks between the cloud population and the environmental moisture field are central to theoretical expositions on the Madden–Julian oscillation (MJO). This study investigates the statistical incidence of positive moisture–convection feedbacks across multiple space and time scales over t...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2018-06, Vol.75 (6), p.1995-2015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Positive feedbacks between the cloud population and the environmental moisture field are central to theoretical expositions on the Madden–Julian oscillation (MJO). This study investigates the statistical incidence of positive moisture–convection feedbacks across multiple space and time scales over the tropical Indian Ocean. This work uses vertically integrated moisture budget terms from the ECMWF interim reanalysis [ERA-Interim (ERA-I)] in a framework proposed by Hannah et al. Positive moisture–convection feedbacks are primarily a low-frequency, low-wavenumber phenomenon with significant spectral signatures in the 32–48-day time scale. The efficacy of these feedbacks, however, is subject to horizontal moisture advection variations, whose relative importance varies with scale. Wave-filtered Tropical Rainfall Measuring Mission (TRMM) satellite precipitation is used to show that these moisture–convection feedbacks contribute more to moisture increases in the MJO than in other equatorial waves. A moving-window correlation analysis suggests that instances of moisture–convection feedbacks are more frequent in drier conditions, when column water vapor (CWV) is below its climatological mean value, with the implication that positive moisture–convection feedbacks shape the mean CWV field by moistening drier air columns, but that they are less effective in moistening already moist environments. Ground radar observations show that stratiform rain damps local CWV increases on short time scales ( |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-17-0138.1 |