Advanced Computational Simulations of Surface Impingement of a Train of Ethanol Drops: A Pathway to Developing Spray-Wall Interaction Submodels
The authors present a computational study of drop-train impingement on a smooth, initially dry surface, with the aim of providing a high-quality dataset to develop reliable spray-wall interaction submodels for engine simulations. Such submodels require information at micron scales, which is unfeasib...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2018-07, Vol.20 (4), p.56-65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors present a computational study of drop-train impingement on a smooth, initially dry surface, with the aim of providing a high-quality dataset to develop reliable spray-wall interaction submodels for engine simulations. Such submodels require information at micron scales, which is unfeasible to obtain experimentally under high-pressure engine conditions. However, supercomputing and high-resolution simulations can resolve thin liquid structures and their breakup, yielding accurate datasets for liquid splashing and film deposition. The current study employs an MPI-parallel multiphase flow solver to simulate surface impingement of a train of ethanol drops. Comparing its results to the experiments, the solvers capability in accurately capturing the sharp splashing threshold and splashed mass ratio was demonstrated. Through a computational technique that tags individual drops, further insight into the splashing dynamics postimpingement was gained, which could be used to formulate more sophisticated spray-wall interaction submodels. |
---|---|
ISSN: | 1521-9615 1558-366X |
DOI: | 10.1109/MCSE.2018.042781326 |