Optimizing searches for electromagnetic counterparts of gravitational wave triggers

Abstract With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2018-07, Vol.478 (1), p.692-702
Hauptverfasser: Coughlin, Michael W, Tao, Duo, Chan, Man Leong, Chatterjee, Deep, Christensen, Nelson, Ghosh, Shaon, Greco, Giuseppe, Hu, Yiming, Kapadia, Shasvath, Rana, Javed, Salafia, Om Sharan, Stubbs, Christopher W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/sty1066