Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi

Structural characterization of dislocations and dislocation reactions in a face-centered cubic high entropy alloy was conducted using the state-of-the-art spherical aberration corrected transmission electron microscopy. We experimentally measured the stacking fault energy of the high entropy alloy f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2018-02, Vol.144 (C), p.107-115
Hauptverfasser: Xu, X.D., Liu, P., Tang, Z., Hirata, A., Song, S.X., Nieh, T.G., Liaw, P.K., Liu, C.T., Chen, M.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural characterization of dislocations and dislocation reactions in a face-centered cubic high entropy alloy was conducted using the state-of-the-art spherical aberration corrected transmission electron microscopy. We experimentally measured the stacking fault energy of the high entropy alloy from the atomic images and diffraction contrast of dislocation cores. The low stacking fault energy results in widely dissociated dislocations and extensive dislocation reactions, which leads to the formation of immobile Lomer and Lomer-Cottrell dislocation locks. These dislocation locks act as both dislocation barriers and sources and are responsible for the significant work hardening with a large hardening rate in the alloy. Based on the atomic-scale characterization and classical dislocation theory, a simple equation was derived to describe the work hardening behavior of the high entropy alloy in the early-stage of plastic deformation. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2017.10.050