Multidimensional butterfly factorization

This paper introduces the multidimensional butterfly factorization as a data-sparse representation of multidimensional kernel matrices that satisfy the complementary low-rank property. This factorization approximates such a kernel matrix of size N×N with a product of O(log⁡N) sparse matrices, each o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2018-05, Vol.44 (3), p.737-758
Hauptverfasser: Li, Yingzhou, Yang, Haizhao, Ying, Lexing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the multidimensional butterfly factorization as a data-sparse representation of multidimensional kernel matrices that satisfy the complementary low-rank property. This factorization approximates such a kernel matrix of size N×N with a product of O(log⁡N) sparse matrices, each of which contains O(N) nonzero entries. We also propose efficient algorithms for constructing this factorization when either (i) a fast algorithm for applying the kernel matrix and its adjoint is available or (ii) every entry of the kernel matrix can be evaluated in O(1) operations. For the kernel matrices of multidimensional Fourier integral operators, for which the complementary low-rank property is not satisfied due to a singularity at the origin, we extend this factorization by combining it with either a polar coordinate transformation or a multiscale decomposition of the integration domain to overcome the singularity. Numerical results are provided to demonstrate the efficiency of the proposed algorithms.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2017.04.002